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Abstract

We introduce a finite version of free probability and show the link between recent results
using polynomial convolutions and the traditional theory of free probability. One tool for accom-
plishing this is a seemingly new transformation that allows one to reduce computations in our
new theory to computations using classically independent random variables. We then explore
the idea of finite freeness and its implications. Lastly, we show applications of the new the-
ory by deriving the finite versions of some well-known free distributions and then proving their
associated limit laws directly. In the process, we gain a number of insights into the behavior
of convolutions in traditional free probability that seem to get lost when the operators being
convolved are no longer finite.
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1 Introduction

After its introduction in 1986 in a series of papers by Dan Voiculescu, free probability has seen an
incredible growth in both its theory and its applications. This has included a theory of free cu-
mulants, first introduced by Nica and Speicher, which gave a unified framework for understanding
classical and free independence through the lens of combinatorics [27]. It has been used as a tool
in a variety of areas, including random matrix theory, combinatorics, representations of symmetric
groups, large deviations, and quantum information theory. In most cases, the relationships men-
tioned above only exist in an asymptotic sense, primarily due to the fact that no nontrivial free
objects exist in finite dimensions. However, recent work of the author with Daniel Spielman and
Nikhil Srivastava [18, 19, 22] suggests that the behavior of finite structures closely resembles the
asymptotic “free” behavior, despite not technically being “free”. The goal of this paper is to intro-
duce a theory that we call “finite free probability” as a way to extend the fundamental concepts
and insights of free probability to finite objects using polynomial convolutions.

1.1 A brief introduction to free probability

We begin with an informal introduction to free probability (in particular, as it relates to classical
probability). Let (M1, µ1) and (M2, µ2) be probability spaces and let p(x, y) a bivariate polynomial.

*Research supported by NSF CAREER Grant DMS-1552520.
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In classical probability, one realizes µ1 and µ2 as random variables X1 and X2 with the goal of
investigating the distribution µY of objects of the form Y = p(X1, X2) living in the tensor product
M1 ⊗M2. Each of these probability spaces are equipped with a test function E{} that allows one
to measure various functions of the Xi. Typically, µY cannot be calculated without knowledge
of the joint probability distribution µX1,X2 . However, there is one “special” joint distribution for
which one can calculate µY only knowing µ1 and µ2 for any p — the case when X1 and X2 are
independent.

In noncommutative probability, one realizes µ1 and µ2 as the spectrum of random operators A1

and A2. The goal is still to investigate the distribution µY of objects of the form Y = p(A1, A2),
however this time such objects live in the free product of M1 and M2. Free independence (or
“freeness”) is the free product analogue of classical independence on tensor products. In particular,
it is the “special” joint distribution that allows µY to be calculated completely in terms of µ1 and
µ2. This time the spaces are equipped with a test function φ [] which has tracial properties (since
the distribution lives on the spectrum of operators) that is used to measure various functions of
the Ai.

Formally, we say that two random operators A,B are freely independent if for all n and all
polynomials p1, . . . , p2n, we have that

φ [p1(A)p2(B) . . . p2n−1(A)p2n(B)] = 0

whenever φ [p2i−1(A)] = φ [p2i(B)] = 0 for all 1 ≤ i ≤ n. In practice, the main difference between
free and classical independence is that free independence respects the noncommutativity of random
operators. For example, when X and Y are independent, we have

E
{
X2Y 2

}
= E{XYXY } = E

{
X2
}
E
{
Y 2
}

whereas when A and B are freely independent, we have

φ
[
A2B2

]
= φ

[
A2
]
φ
[
B2
]

while
φ [ABAB] = φ

[
A2
]
φ [B]2 + φ [A]2 φ

[
B2
]
− φ [A]2 φ [B]2

On the other hand, there are a number of connections between classical and free independence,
with varying degrees of understanding. Random matrix theory, in particular, captures a num-
ber of these connections, as many times classical independence of individual entries leads to free
independence of spectral distributions. For example, we have the following theorem of Voiculescu:

Theorem 1.1. Let µA and µB be discrete probability distributions and let Ad and Bd be d× d real
symmetric matrices with eigenvalue distribution µA and µB (respectively). Let Rd and R′d be i.i.d.
random matrices drawn uniformly (via the Haar measure) from O(d) (the orthogonal group). Then
the operators

A = lim
d→∞

RdAdR
T
d and B = lim

d→∞
R′dBdR

′T
d

are freely independent.

Theorem 1.1 reveals one of the hurdles in applying free probability theory to finite structures:
finite dimensional matrices are freely independent if and only if one of them is a multiple of the
identity. As a result, applications of the theory must be done in an asymptotic sense.
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1.2 Convolutions

The computational aspects of free probability center around computing polynomial functions of
random operators. Unlike in the classical case, however, even the basic operations of addition and
multiplication are nontrivial to compute, even when the operators involved are freely independent.

1.2.1 Additive Convolution

Let A and B be operators with spectral distributions µA and µB. The free additive convolution of
µA and µB (written µA � µB) is the distribution of the operator A+ B in the case that A and B
are freely independent. To compute such a thing, we begin by computing the Cauchy transform of
µA

GµA (x) =
∑
i

1

xi+1
φ
[
Ai
]

= φ
[
(xI −A)−1

]
=

∫
µA(t)

x− t
dt (1)

and then the so-called R-transform as a function of the inverse of GµA (x)

RµA (x) = G−1µA (x)− 1

x
= G−1µA (x)− G−1µ0 (x)

where 0 is the zero matrix. Here, “inverse” means the compositional inverse of the power series of
GµA (x) expanded around x =∞. When A and B are freely independent, one then has

RµA�µB (x) = RµA (x) +RµB (x) . (2)

Alternatively, one could simply define the free additive convolution µA � µB as being the spectral
distribution satisfying Equation (2). In the case that all of the operators have compact support,
this is known to uniquely define the distribution µA � µB [34].

We remark that Equation (1) shows the relationship between the Cauchy transform and the
(non-exponential) moment generating function

1

x
Gµ
(

1

x

)
=
∑
i

Mi(µA)xi =
∑
i

φ
[
Ai
]
xi

where

Mi =

∫
xiµA(x) dx

is the ith moment. In this respect, it is similar to the way in which one would form the classical
additive convolution by forming the moment generating function E

{
exY
}

and then adding some
transformation of it (in this case, ln E

{
exY
}

).

1.2.2 Multiplicative Convolution

For the multiplicative case, one uses a variant of the Cauchy transform above

M̃µA (x) = xGµA (x)− 1

and then form (what we call) the modified S-transform by inverting a power series (this time taken
at x = 0)

S̃µA (x) =
s

1 + s
M̃(−1)

µA
(x) =

M̃(−1)
µA (x)

M̃(−1)
µI (x)
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where I is the identity matrix. When A and B are freely independent, the moments of µA � µB
are then defined by

S̃µA�µB (x) = S̃µA (x) S̃µB (x) (3)

Remark 1.2. We call this the “modified” S-transform because it does not use the same definition
that is typically seen in free probability [34]. The relation to the usual definition is simply

S̃µA (x) =
1

SµA(x)
.

This of course does not change the relationship in Equation (3) in any way, and so for the purposes
of traditional free probability it seems like a silly alteration. However, in the finite setting, it does
seem to be the more appropriate choice (as is discussed in [19]).

1.3 Previous Work

The idea of extending free probability to finite matrices is not new. As best the author could tell,
it was first proposed by Edelman and Rao in 2005 [11]. Later, the same authors suggested an
implementation of such a theory, although with a focus on the computational (i.e. with Matlab)
aspects of free probability [29]. Their implementation uses polynomials (just as ours will); however,
their polynomials are substantially different from the ones used in this paper. Rather than encoding
distributions in the roots of a polynomial, they encode various transforms as the solutions of
bivariate polynomials and then give operations on these polynomials that capture the behavior of
additive and multiplicative convolution.

The use of polynomials in [29] is far from coincidental. Polynomials have been closely connected
to random matrix theory from its initial beginnings. It was recognized early on that the spectral
distributions of random matrices matched the asymptotic root distribution of various orthogonal
polynomials, and many of the known results regarding spectral distributions have been proved
using this correspondence [8]. Polynomials have also been used in similar ways in a strictly free
probabilistic setting [2], and are one of the major tools in the investigation of universality for
random matrices [12].

Lastly, we mention the work of Pereira connecting so-called trace vectors to hyperbolic polyno-
mials [28], which can be seen as a special case of the finite freeness developed in Section 5. See
Section 7.1 for more details.

1.4 New Results

The contribution of this paper is to show a direct link between polynomial convolutions and free
probability that the author believes is fundamentally new. Previous work used polynomials only
for their asymptotic properties, and typically focused on orthogonal polynomials. In this work, we
show that polynomials actually exhibit a close link to free probability on a finite scale. Furthermore,
this will provide a framework for understanding recent work in topics such as restricted invertibility
[18] and Ramanujan graphs [22]. By linking these methods, we hope to provide a systematic way
to use free probability as a tool in combinatorics and graph theory (and vice versa).
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1.5 Organization

We begin in Section 2 by listing the collection of ideas and definitions that we will use. In Section 3,
we will introduce a transformation on finite multisets that we call the U transform, which will be
useful in the computations of Section 4. In Section 4, we show how the symmetric additive and
symmetric multiplicative polynomial convolutions introduced in [19] relate to convolutions from
free probability. In Section 5, we then examine the properties of finite freeness and use them to
derive a collection of majorization inequalities. Lastly, in Section 6, we show some applications
of the theory by deriving the finite versions of various laws in free probability and then deriving
their associated limit theorems directly. We also show how one the theory can be used to shine
a more intuitive light on results such as Bourgain and Tzafriri’s restricted invertibility theorem
[5, 18]. We finish with some concluding remarks, suggestions for further research directions, and
acknowledgements.

2 Preliminaries

Throughout the paper, we will focus on real symmetric matrices (although the results can easily
be extended). We will write ρA to denote the largest eigenvalue of a matrix A and tr [] to denote
the normalized trace (so that tr [I] = 1). In the case of matrices, we will use Tr [] to denote the
usual trace (so that Tr [I] = dim(I)).

The first part of this section will review the polynomial convolutions from [19] that will be the
focus of this paper. The remainder of the section will be used to introduce some of the tools that
will be used in the analysis.

2.1 Polynomial convolutions

Finite convolutions of polynomials were introduced in [19]. We will be concerned with the real,
symmetric cases. Let A and B be d× d real symmetric matrices with

p(x) = det [xI −A] and q(x) = det [xI −B] .

Definition 2.1. The symmetric additive convolution of p and q is defined as

[p�d q](x) = EQ
{

det
[
xI −A−QBQT

]}
where the expectation is taken over orthonormal matrices Q distributed uniformly (via the Haar
measure). For A and B positive definite, the symmetric multiplicative convolution of p and q is
defined as

[p�d q](x) = EQ
{

det
[
xI −AQBQT

]}
.

Furthermore, they note that when p and q each have all real roots, then both

[p�d q](x) and [p�d q](x)

have all real roots, due to the (much more general) general theory developed in [4]. The following
linear formulas were proved as well:
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Theorem 2.2. If

p(x) =
∑
i

xd−i(−1)ipi and q(x) =
∑
i

xd−i(−1)iqi

then

[p�d q](x) =
∑
i+j≤d

xd−i−j(−1)i+j
(d− i)!(d− j)!
(d− i− j)!d!

piqj (4)

and
[p�d q](x) =

∑
i=0

xd−i−j(−1)i
piqi(
d
i

) (5)

2.2 Laplace Transform

For a function f , the Laplace transform is defined as

L{f} (s) =

∫ ∞
0

e−xsf(x) dx.

The Laplace transform is quite useful combinatorially due to its ability to turn exponential gener-
ating functions into ordinary generating functions (and vice versa), as

L
{
xk
}

(s) =
k!

sk+1
. (6)

Those uninterested in the details of convergence should feel free to simply treat the transform
as a linear operator on power series (at least as far as this paper goes, very little would be lost
in doing so). In fact, many of the technical details in Section 4 (the computations regarding the
domain of integration where the boundary ends up disappearing from the solution) are for the most
part showing that we can safely treat the Laplace transform in exactly this way.

2.3 Legendre Transform

Let f be a function that is convex on an interval X ⊆ R. The Legendre transform is defined to be
the function

f∗(s) = sup
x∈X
{xs− f(x)} (7)

where the domain of f∗ is the space

X∗ =

{
x∗ ∈ R : sup

x∈X
{xx∗ − f(x)} <∞

}
.

Note that the convention is to have f∗ be a function in the variable p, but we will use p for other
purposes, and so we will use the variable s. In the case that f is differentiable, one has the following
relation:

Lemma 2.3. Let f be strictly convex on X and differentiable at a point z ∈ X. Then f ′(z) ∈ X∗
and

f∗(f ′(z)) = zf ′(z)− f(z).
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Proof. Let z ∈ X. Since f is differentiable at z and strictly convex, it satisfies the inequality

f(x) ≥ f(z) + (x− z)f ′(z)

for all x ∈ X, with equality if and only if x = z. Rearranging, we have

sup
x∈X
{xf ′(z)− f(x)} = zf ′(z)− f(z) <∞

which, by definition, means f ′(z) ∈ X∗ and f∗(f ′(z)) = zf ′(z)− f(z).

Many of the useful properties of the Legendre transform follow directly from Lemma 2.3. In
particular, it implies that f∗ is strictly convex whenever f is twice differentiable.

Corollary 2.4. Let f satisfy the conditions of Lemma 2.3. Then

1. f ′(f∗′(x)) = x

2. f ′′(f∗′(x)) = 1/f∗′′(x)

Proof. Take derivatives of the formula in Lemma 2.3.

The Legendre transform appears in many areas under many different names. It is often referred
to as the convex conjugate in the analysis literature and as the Fenchel transform (or Legendre–
Fenchel transform) in optimization. In particular, the term “convex conjugate” is typically applied
when one applies Equation (7) to more general Banach spaces, and the term “Fenchel dual” is
typically applied when one applies Equation (7) in primal–dual algorithms of convex programming.
In this paper, we use only the most basic facts from theory, and as result, we will maintain the
nomenclature Legendre transform to highlight this fact.

2.4 Lp norms

The main tool we will use is the theory of Lp spaces from Banach space theory. Given a measure
space (X,µ), For 0 < p <∞, the Lp-norm of a function f is defined to be

‖f‖p =

(∫
|f |p dµ

) 1
p

and for p =∞, we have

‖f‖∞ = lim
p→∞

‖f‖p = inf {a ≥ 0 : µ({x : |f(x)| > a}) = 0}

We will only use one simple result from the theory of Lp spaces:

Lemma 2.5. If µ is absolutely continuous with respect to the Lebesgue measure and f is continuous,
then

‖f‖∞ = sup
x∈X
{|f(x)|}

The following simple observation relates the Legendre transform to Lp spaces.
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Corollary 2.6. Let X be a subset of the real line and µ a measure that is absolutely continuous
with respect to the Lebesgue measure. Then for any continuous function f : X → R, we have

f∗(s) = ln
∥∥∥exs−f(x)∥∥∥

∞

for all s ∈ X∗ (where both the Legendre transform and L∞ norm are taken over the space X).

Proof. Since f is real, f∗ is real as well. Hence we can write f∗(s) as

f∗(s) = ln(exp(f∗(s))

= ln

(
exp

(
sup
x∈X
{xs− f(x)}

))
= ln

(
sup
x∈X
{exp(xs− f(x))}

)
.

Since f is real-valued, exp(xs− f(x)) is strictly nonnegative, and so

ln

(
sup
x∈X
{| exp(xs− f(x))|}

)
= ln

∥∥∥exs−f(x)∥∥∥
∞

as required.

For what follows, we will always have µ be the Lebesgue measure with the domain of integration
assumed to be the real line. In the case that we want to integrate on a smaller domain, we will
explicitly set the function to 0 as in Equation (8). We will also use the convention that all norms
should be taken with respect to the variable x. That is, when we write

‖f(x, s)‖p

we mean
‖f(·, s)‖p

and so the former should always be seen as a function of s.

2.5 Fuglede–Kadison determinants

Rather than give the general definition of the Fuglede–Kadison determinant in operator theoretic
terms, we will simply define it for the case in which we will need it. For a finite dimensional d× d
positive definite matrix A, we define the normalized determinant to be

∆+ (A) =

{
det [A]1/d if A is positive definite

0 otherwise
(8)

Fuglede and Kadison showed that for a sequence of positive definite matrices A1, A2, . . . , for which
the spectral measure converges in a suitable way to a limiting operator a, the normalized determi-
nant converges to a well-defined limit and the limiting operator has many of the usual properties
that one expects in a determinant (for example, multiplicativity) [14].

The Fuglede–Kadison determinant is typically defined in much greater generality, however we
will only need the case where it acts as a normalized version of the determinant function (the goal
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being to trade generality (and perhaps rigor) for readability by those not familiar with C∗-algebras).
The only nontrivial property that we will use is that ∆+ () is well-defined and is a limit of its values
on a suitable sequence of matrices. It should be noted that the Fuglede–Kadison determinant (in
the greater generality) already plays a role in the theory of free probability in the form of Brown
measures (see [9] for a survey of such connections). It is unclear whether there is any relationship
between the methods in this paper and such results.

2.6 Mixed discriminants

Let X1, . . . , Xd be d× d matrices. We define the mixed discriminant to be

D (X1, . . . , Xd) =
∂d

∂t1 . . . ∂td
det

[
d∑
i=1

tiXi

]
Remark 2.7. Note that our definition of the mixed discriminant differs by a factor of d! from many
other treatments. The literature is far from standard in this respect, and our reason for taking this
normalization is that it will simplify a number of the formulas we will use.

The properties of mixed discriminants are well studied (see, for example [3]), and appear in
numerous contexts. Some of the more well-known properties are the following:

Lemma 2.8. Let A,B,X2, . . . , Xd be d× d matrices and let c be a scalar. Then

1. D () is invariant under permutation of its arguments

2. D (A+ cB,X2, . . . , Xd) = D (A,X2, . . . , Xd) + cD (B,X2, . . . , Xd)

3. D (A, . . . , A) = d! det [A]

4. D (AX1, . . . , AXd) = det [A] D (X1, . . . , Xd)

One corollary of these properties is that the determinant can be decomposed in a manner similar
to the binomial theorem:

det [xI +A] =
∑
i

xd−i
(
d

i

)
D (A[i], I[d− i]) . (9)

While the mixed discriminant clearly has a close relationship to the determinant, it is also
closely related to the permanent. In particular, when X1, . . . , Xd are diagonal matrices, one gets
the formula

D (X1, . . . , Xd) = Perm(Q) (10)

where the columns of Q are the diagonals of the Xi.
The only nonstandard property of the mixed discriminant that we will use was proven in [6]

and can be seen as a type of distributivity:

Lemma 2.9. Let A and X1, . . . , Xd be d× d matrices. Then

Tr [A] D (X1, . . . , Xd) =

d∑
i=1

D (X1, . . . , Xi−1, AXi, Xi+1, . . . , Xd)

While we will be using the mixed discriminant in the context of real symmetric matrices, it
is worth mentioning that all of the properties mentioned here hold for arbitrary square matrices
(except Equation (10), obviously, which requires the matrices to be diagonal).
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3 U Transform

Given a multiset S, we will write |S| for the number of elements in the multiset (with multiplicity).
To be pedantic, |{1, 2, i, i}| = 4. To abuse notation, we will often treat multisets as though they
were random variables. In any such case, the random variable should be considered to be uniformly
distributed on the elements of the multiset. For example,

1

|S|
∑
si∈S

f(si) and E{f(S)}

will be used interchangably.

Lemma 3.1. Let S be a finite multiset of complex numbers with |S| = d. Then there exists a
unique multiset T of complex numbers with |T | = d such that∏

si∈S
(x− si) = E

{
(x− T )d

}
.

for all x.

Proof. Clearly both sides of the equation are monic polynomials, so it suffices to prove that the
equality holds for each of the other d coefficients. Each such equality can be seen as a constraint
on E

{
T k
}

for 1 ≤ k ≤ d. Using Newton’s identities, this is equivalent to having constraints on the
first d elementary symmetric functions of the elements of T . However, this is equivalent to having
d solutions to a polynomial of degree d, which is true (and unique) over the complex numbers.

Given a multiset S, we will refer to the multiset T which satisfies the constraints of Lemma 3.1
as the U transform of S. The property of having |T | = |S| is an important one, as the next lemma
will show.

Lemma 3.2. Let S be a multiset of real numbers and T its U transform. Then

E{f(T )} ∈ R.

for any function f that is analytic on the support of T .

Proof. Since all elements of S are real, the coefficients of

d∏
si∈S

(x− si) =

d∑
k=0

(
d

k

)
xd−k(−1)k E

{
T k
}

are all real. Now consider the polynomial

q(x) =
d∏

ti∈T
(x− ti) =

d∑
i=0

qix
d−i.

By the Newton identities, the coefficients qi are expressable as functions of the first d moments
(which we have just seen are real) and are therefore real. Now let AT be a real symmetric matrix
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with eigenvalues the elements of T . Then the Cayley–Hamilton theorem asserts that (as a matrix
equation) q(AT ) = 0. Hence

0 = tr [AT q(AT )] =
∑
i

qitr
[
Ad−i+1
T

]
which is an expression for tr

[
Ad+1
T

]
as a linear combination of tr

[
AkT
]

for k ≤ d with real coefficients

(and so itself is real). By proceeding inductively, we have tr
[
AkT
]

= E
{
T k
}
∈ R for all k and so

the same will be true for any analytic function.

Note that if |T | were larger than |S|, there could be no such guarantees. To see this, let k > 0.
We can use the same logic as Lemma 3.1 to find a multiset W with |W | = (d + k) which has the
same first d moments as µ, but then has a complex (d+ 1)th moment.

Despite our willingness to treat multisets as distributions, one should be careful when going
in the reverse direction. We will say that a distribution µ is d-realizable if there exists a multiset
Sµ with |Sµ| = d such that the uniform distribution on Sµ gives the same probabilities as µ. The
multiset Sµ will then be referred to as its d-realization. In particular, the U transform should
always be defined in terms of a realization of a distribution and not the distribution itself. It is
easy to see that an d-realizable distribution will also be kd-realizable for any positive integer k.
The realizations, however, will be (except in very special cases) quite different, as the next example
shows.

Example 3.3. Let µ be the two-point distribution taking values {−1, 1} each with probability
1/2. Then S2 = {−1, 1} is its 2-realization, which has U transform T2 = {−i, i} which can be seen
by computing

E
{

(x− S2)2
}

=
1

2
(x2 − 2xi− 1) +

1

2
(x2 + 2xi− 1) = x2 − 1 = (x+ 1)(x− 1)

However, the 4-realization of µ (S4 = {1, 1,−1,−1}) has U transform

T4 =


√

2
√

2− 1

3
,

√
2
√

2− 1

3
, i

√
2
√

2 + 1

3
,−i

√
2
√

2 + 1

3


which can be checked by computing

E
{
T 4
4

}
= 1 and E

{
T 2
4

}
= −1

3

so that
E
{

(x− T4)4
}

= x4 − 2x2 + 1 = (x− 1)2(x+ 1)2.

The utility of the U transform will lie in its ability to turn polynomial convolutions (and
therefore, as we shall see, finite free independence) into classical independence. This is illustrated
in the following lemma:

Lemma 3.4. Let p and q be degree d polynomials with S and T the U transforms of their roots. If
S and T are independent, then

[p�d q](x) = E
{

(x− S − T )d
}

and [p�d q](x) = E
{

(x− ST )d
}
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Proof. Let p(x) =
∑

i x
d−i(−1)ipi. As observed previously, we have

p(x) = E
{

(x− S)d
}

=
∑
i

xd−i
(
d

i

)
E
{

(−S)i
}

and so pi =
(
d
i

)
E
{
Si
}

(and similarly for q and T ). By Equation (4), we have

[p�d q](x) =
d∑
i=0

d−i∑
j=0

xd−i−j(−1)i+j
(d− i)!(d− j)!
d!(d− i− j)!

piqj

=
d∑
i=0

d−i∑
j=0

xd−i−j(−1)i+j
(d− i)!(d− j)!
d!(d− i− j)!

(
d

i

)(
d

j

)
E
{
Si
}
E
{
T j
}

=
d∑
i=0

d−i∑
j=0

xd−i−j(−1)i+j
(
d

i, j

)
E
{
SiT j

}
(independence)

= E
{

(x− S − T )d
}
.

The multiplicative case is similar, using Equation (5):

[p�d q](x) =

d∑
i=0

xd−i(−1)i
piqi(
d
i

)
=

d∑
i=0

xd−i(−1)i
(
d

i

)(
d

i

) E
{
Si
}
E
{
T i
}(

d
i

)
=

d∑
i=0

xd−i(−1)i
(
d

i

)
E
{
SiT i

}
(independence)

= E
{

(x− ST )d
}
.

as required.

An easy corollary of Lemma 3.4 is scale and translation invariance of the U transform.

Corollary 3.5. Let T be the U transform of a multiset S. Then the U transforms of

{s+ k : s ∈ S} and {ks : s ∈ S}

are
{t+ k : t ∈ T} and {kt : t ∈ T}

respectively.

Proof. Use Lemma 3.1 with q = (x− k)d.
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4 Free probability as the limit of polynomial convolutions

The goal of this section is to show the relationship between the polynomials convolutions defined in
Section 2.1 and free probability. Our approach will be to introduce sequences of transforms (indexed
by positive integers) which converge to Voiculescu’s R-transform and S-transform when applied to
the spectral distributions of Hermitian operators. This will define a sequence of convolutions which
will converge to the free additive and free multiplicative convolution from free probability, but in
the finite case will reduce to the convolutions of polynomials.

Before getting into any details, it is worth considering what to expect out of finite versions of
(any) transforms. Recall that the spectral distribution of an d×d matrix is completely determined
by the first d moments. As a result, the same is true for any function of these moments, including
the transforms that we will define. It will nonetheless be computationally beneficial to be able to
consider generic power series, which in our context, will simply have extraneous information (that
we can choose to ignore if and when it is useful to us).

Interestingly, we will find that the additive and multiplicative convolutions will “store” their
moments in the coefficients of different polynomial bases. The additive case will use the standard
polynomial basis and so we will be interested in certain coefficients of our power series. The
multiplicative convolution, on the other hand, will use “rising factorial” bases, which in turn will
cause our interest to lie in the evaluations of our power series at certain points (see Remark 4.9).
The additive case, in particular, will require some operations that do not obviously preserve such
information (as this is not true for general operations). Hence we will need to prove that the
operations that we will encounter can be performed without destroying information, which we do
now.

Let f(x) =
∑

i aix
i be a formal power series. For an integers k, we will write f mod [xk] to

denote the polynomial
k−1∑
i=0

aix
i

and we will write
f ≡ g mod [xk]

if f − g mod [xk] is the 0 polynomial. Many properties can be derived easily from the definition.
For example, if

a(x) ≡ b(x) mod [xk] and c(x) ≡ d(x) mod [xk]

then we have

a(x)c(x) ≡ b(x)d(x) mod [xk] and a(x) + c(x) ≡ b(x) + d(x) mod [xk]

Combining these implies (under the same assumptions), that

h(a(x)) ≡ h(b(x)) mod [xk]

for any power series h. This leads to the following observation, which we state as a corollary:

Corollary 4.1. Let a, b, h be power series with h invertible (that is, there exists power series g
such that h(g(x)) = x for all x. Then

a(x) ≡ b(x) mod [xk] ⇐⇒ h(a(x)) ≡ h(b(x)) mod [xk]

13



4.1 Additive convolution

We begin with the additive case.

Definition 4.2. Let A be a Hermitian operator with with compactly supported spectral distribu-
tion µA. For an integer d, we define the power series

KdµA (s) = − ∂

∂s
ln
∥∥e−xs∆+ (xI −A)

∥∥
d

(11)

where the domain of integration is (ρA,∞). We call KdµA (s) the d-finite K-transform of µA.

It should be clear from the definition that KdµA (s) is invariant under unitary transformations of
A. The d-finite K-transform will be the analogue of the inverse Cauchy transform from Voiculescu’s
theory. We then define the d-finite R-transform by

RdµA (s) = KdµA (s)−Kdµ0 (s) (12)

where µ0 is the constant 0 distribution. It is not hard to calculate (and we will do most of it in
Lemma 4.3) that

Kdµ0 (s) =

(
1 +

1

d

)
1

s

which one can view as the discrete version of the familiar 1/s term that is subtracted from the
inverse Cauchy transform to get the R-transform in Voiculescu’s theory.

4.1.1 Relation to polynomial convolutions

We begin by showing the connection between finite R-transforms and finite free additive convo-
lutions of polynomials. Our first job will be to find the value of the d-finite R-transform of a
distribution on an d × d matrix. The computation will employ the Laplace transform from Sec-
tion 2.2 as well as the U transform introduced in Section 3.

Lemma 4.3. If A is an d× d Hermitian matrix, then

‖e−xs∆+ (xI −A)‖dd
‖e−xs∆+ (xI − 0)‖dd

≡ E
{
e−dsTA

}
mod [sd+1]

where TA is the U transform of λ (A).

Proof. For an d× d matrix A, we have the simplification

∆+ (xI −A)d = det [xI −A] = E
{

(x− TA)d
}
.

where TA is the U transform of λ (A). Hence∥∥e−xs∆+ (xI −A)
∥∥d
d

=

∫ ∞
ρA

e−dxs E
{

(x− TA)d
}

dx (y := x− ρA)

= e−dρAs
∫ ∞
0

e−dys E
{

(y + ρA − TA)d
}

dx

= E
{
e−dρAsL

{
(x+ ρA − TA)d

}
(ds)

}
14



where

L
{

(x+ ρA − TA)d
}

(ds) =

d∑
i=0

(
d

i

)
(ρA − TA)d−iL

{
xi
}

(ds)

=
d∑
i=0

(
d

i

)
(ρA − TA)d−i

i!

(ds)i+1

= d!
d∑
i=0

(ρA − TA)d−i
(ds)−i−1

(d− i)!
.

When A is the 0 matrix, we have ρA = TA = 0, so∥∥e−xs∆+ (xI −A)
∥∥d
d

=
d!

(ds)d+1
.

Hence we can write

‖e−xs∆+ (xI −A)‖dd
‖e−xs∆+ (xI − 0)‖dd

=
(ds)d+1

d!
E
{
e−dsρAL

{
(x+ ρA − TA)d

}
(ds)

}
= e−dsρA E

{
d∑
i=0

(ρA − TA)d−i
(ds)d−i

(d− i)!

}
.

where
d∑
i=0

(ρA − TA)d−i
(ds)d−i

(d− i)!
≡ E

{
e(ρA−TA)ds

}
mod [sd+1]

Hence

‖e−xs∆+ (xI −A)‖dd
‖e−xs∆+ (xI − 0)‖dd

≡ e−dρAs E
{
e(ρA−TA)ds

}
mod [sd+1]

≡ E
{
e−dsTA

}
mod [sd+1]

as claimed.

This gives us a direct formula for the d-finite R-transform:

Corollary 4.4. If A is a d× d Hermitian matrix, then

RdµA (s) ≡ −1

d

∂

∂s
ln E

{
e−dsTA

}
mod [sd]

where TA is the U transform of λ (A).

Proof. We start by unpacking Equation (12):

RdµA (s) = KdµA (s)−Kdµ0 (s)

= − ∂

∂s
ln
∥∥e−xs∆+ (xI −A)

∥∥
d

+
∂

∂s
ln
∥∥e−xs∆+ (xI − 0)

∥∥
d

= −1

d

∂

∂s
ln

(
‖e−xs∆+ (xI −A)‖dd
‖e−xs∆+ (xI − 0)‖dd

)
.
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By Lemma 4.3, we have

‖e−xs∆+ (xI −A)‖dd
‖e−xs∆+ (xI − 0)‖dd

≡ E
{
e−dsTA

}
mod [sd+1]

where TA is the U transform of λ (A). Since ln is invertible, we can apply Corollary 4.1 to get

ln

(
(ds)d+1

d!

∥∥e−xs∆+ (xI −A)
∥∥d
d

)
≡ ln E

{
(s− TA)d

}
mod [sd+1].

This implies the claim, since having two power series match on the first d + 1 coefficients implies
their derivatives match on the first d coefficients.

Lemma 4.5. Let A and B be d× d Hermitian matrices. Then the following are equivalent:

1. RdµA (s) +RdµB (s) ≡ RdµA+B
(s) mod [sd]

2. det [xI −A] �d det [xI −B] = det [xI −A−B]

Proof. Let TA, TB, TA+B be the U transforms of λ (A) , λ (B) , λ (A+B) respectively and where TA
and TB are treated as independent random variables. By Lemma 3.4, we have that 2. holds if and
only if

E
{

(x− TA − TB)d
}

= E
{

(x− TA+B)d
}

which holds if and only if TA + TB and TA+B have the same first d moments. This in turn is
equivalent to the statement

E
{
e−ds(TA+TB)

}
≡ E

{
e−dsTA+B

}
mod [sd+1]

which is true if and only if

E
{
e−ds(TA)

}
E
{
e−ds(TB)

}
≡ E

{
e−dsTA+B

}
mod [sd+1]

since TA and TB were chosen to be independent. Since ln is invertible, we can apply to Corollary 4.1
to see that this is equivalent to the statement

fA(s) + fB(s) ≡ fA+B(s) mod [sd+1]

where fX(s) = −1
d ln E

{
e−ds(TB)

}
. So by Corollary 4.4, it remains to show that the two statements

1. fA(s) + fB(s) = fA+B(s) mod [sd+1]

2. ∂
∂sfA(s) + ∂

∂sfB(s) ≡ ∂
∂sfA+B(s) mod [sd]

are equivalent. The forward implication is obvious (and was done in the proof of Corollary 4.4).
The only issue with the reverse implication, however, is the constant term. Hence we merely need
to show that fA(0) + fB(0) = fA+B(0), and we would be done. However this follows easily by
noting that (by definition) fX(0) = 0 for all X.

Note that Lemma 4.5 relied heavily on the fact that A and B were d×d matrices. This came in
the form of the assertion that the first d moments completely characterize the distribution (which
of course is not true for more general distributions).
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4.1.2 Relation to Voiculescu

We wish to show that the our definition is, in fact, a generalization of Voiculescu’s R-transform.
We first show that this is the case for a fixed distribution.

Lemma 4.6. Let A be a Hermitian operator with compactly supported spectral distribution µA.
Then

lim
d→∞

KdµA (s) = G−1µA (s)

at all points s ∈ (ρA,∞).

Proof. We first note that the function

f(x) = − ln ∆+ (xI −A)

exists and is continuous on (ρA,∞). Furthermore, we have

f ′′(x) = tr
[
(xI −A)2

]
> 0

and so f is strictly convex. By Corollary 2.4, we therefore have f ′−1(s) = f∗′(s) where

f ′(x) = −tr
[
(xI −A)−1

]
= −GµA (x)

and GµA (x) is the Cauchy transform. Hence

f ′
−1

(s) = (−GµA (x))−1 (s) = G−1µA (−s) .

Plugging this into Corollary 2.6 gives

G−1µA (s) = f∗′(−s) = − ∂

∂s
ln
∥∥e−xs∆+ (xI −A)

∥∥
∞

The result then follows from Lemma 2.5.

4.2 Multiplicative convolution

We follow the same path as in the additive case. Note that this time we require the spectral
distribution to be positive almost surely, just as in Voiculescu’s theory.

Definition 4.7. Let A be a positive definite operator with compactly supported spectral distribu-
tion µA. For an integer d, we define the power series Ñ d

µA
(s) by

ln Ñ d
µA

(s) = − ∂

∂s
ln
∥∥e−xs∆+

(
I − e−xA

)∥∥
d

(13)

with the domain of integration being (ln ρA,∞). We call Ñ d
µA

(s) the d-finite N-transform of µA.

Again it should be clear that Ñ d
µA

(s) is invariant under unitary transformations of A. Similar to
before, the d-finite N-transform will be the analogue of the inverse M-transform from Voiculescu’s
theory. We then define the d-finite S-transform by

ln S̃dµA (s) = ln Ñ d
µA

(s)− ln Ñ d
µI

(s) (14)
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where I is the identity operator. Note that we have dropped the “modified” adjective since no
other such thing exists in this context. This time calculating Ñ d

µI
(s) is a bit more involved; using

the calculation in Lemma 4.10, we get

ln Ñ d
µI

(s) = −1

d

∂

∂s
ln

(
Γ(ds)d!

Γ(ds+ d+ 1)

)
= ψ(ds+ d+ 1)− ψ(ds)

where ψ(x) = ∂
∂s ln Γ(x) is the digamma function. Once again one can view this as the discrete

version of the familiar (s + 1)/s term that is multiplied with the inverse M-transform to get the
S-transform in Voiculescu’s theory. To see this, we can use the standard asymptotic approximation
for the digamma function ψ(x) = ln(x) +O(1/x), giving

lim
d→∞

Ñ d
µI

(s) = lim
d→∞

ds+ d+ 1

ds
=
s+ 1

s

as expected.

4.2.1 Relation to polynomial convolutions

As before, we start by computing the case that A is an d× d matrix.

Lemma 4.8. Let A be an d× d positive definite matrix with TA the U transform of λ (A). Then

‖e−xs∆+ (I − e−xA)‖dd
‖e−xs∆+ (I − e−xI)‖dd

= ρ−dsA fA(s)

where fA(x) is the unique degree d polynomial which satisfies

fA

(
−k
d

)
= E

{(
TA
ρA

)k}
for all integers 0 ≤ k ≤ d.

Proof. We expand∥∥e−xs∆+
(
I − e−xA

)∥∥d
d

=

∫ ∞
ln ρA

e−xds E
{

(1− e−xTA)d
}

dx (y := x− ln ρA)

= ρ−dsA

∫ ∞
0

e−yds E
{

(1− e−yTA/ρA)d
}

dy

= ρ−dsA L
{
E
{

(1− e−yTA/ρA)d
}}

(ds)

where

L
{

(1− e−xTA/ρA)d
}

(ds) =
d∑
i=0

(
d

i

)
(−TA/ρA)iL

{
e−ix

}
(ds) =

d∑
i=0

(
d

i

)
(−TA/ρA)i

ds+ i
.

so that ∥∥e−xs∆+
(
I − e−xA

)∥∥d
d

= ρ−dsA

d∑
i=0

(
d

i

)
E
{

(−TA/ρA)i
}

ds+ i
(15)
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Now when A = I (the identity), we have ln ρA = 0 and TA = 1, so that

∥∥e−xs∆+
(
I − e−xI

)∥∥d
d

=

d∑
i=0

(
d

i

)
(−1)i

ds+ i
.

To find a closed form solution to this sum, we can set

f(x) =
d∑
i=0

(−1)i
(
d
i

)
xds+i

ds+ i

so that

f ′(x) =

d∑
i=0

(−1)i
(
d

i

)
xds+i−1 = xds−1(1− x)d.

Hence

f(1)− f(0) =

∫ 1

0
xds−1(1− x)d dx = β(ds, d+ 1)

where β is the well known Beta function. Assuming s > 0, we have f(0) = 0 and so

f(1) =

∫ 1

0
xds−1(1− x)d dx =

Γ(ds)Γ(d+ 1)

Γ(ds+ d+ 1)
= d!

Γ(ds)

Γ(ds+ d+ 1)
.

Hence we have

‖e−xs∆+ (I − e−xA)‖dd
‖e−xs∆+ (I − e−xI)‖dd

=
ρ−dsA

d!

Γ(ds+ d+ 1)

Γ(ds)

d∑
i=0

(
d

i

) E
{

(−TA/ρA)i
}

ds+ i
.

Since

Γ(ds+ d+ 1)

Γ(ds)
=

d∏
i=0

(ds+ i)

the poles that appear in Equation (15) will be eliminated. In particular, we can write

fA(s) := ρdsA
‖e−xs∆+ (I − e−xA)‖dd
‖e−xs∆+ (I − e−xI)‖dd

.

where fA(s) is a degree d polynomial. One can then check that

fA

(
−k
d

)
=

1

d!

(
d

k

)
E
{

(−TA/ρA)k
} d∏
i=0
i 6=k

(i− k) = E

{(
TA
ρA

)k}

for integers 0 ≤ k ≤ d, which therefore uniquely determines it.

Note that if one started with a collection of d+ 1 points(
−k
d
, E

{(
TA
ρA

)k})
,

and used the method of Lagrange interpolation to build a degree d polynomial going through those
points, the formula would produce exactly fA(s). Of course it would have to produce fA(s) in some
form (since it is uniquely determined), but in situations where there were not enough points to
completely determine the polynomial, this observation might be useful.
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Remark 4.9. There is a noticeable difference between Lemma 4.3 (which produces a generating
function characterized by its coefficients) and Lemma 4.8 (which produces a polynomial character-
ized by evaluations). On the other hand, the (Voiculescu) S-transform seemingly keeps all of its
information in its coefficients, similar to the way the (Voiculescu) R-transform does, and so one
can ask how this difference is resolved.

In this respect, we can turn to Taylor’s theorem — another way to think about coefficients in
an expansion is as the collection of derivatives at 0. However Taylor’s theorem can be extended to
other polynomial bases using the theory of umbral calculus [30]. In particular, if one defines the
t-backward difference operator as

∇t[f ](x) =
f(x)− f(x− t)

t

then the umbral analogue to Taylor’s theorem is

f(x) =
∞∑
k=0

∇kt [f ](a)
(x− a)(x− a− t)(x− a− 2t) . . . (x− a− (k − 1)t)

k!
:=

∞∑
k=0

∇kt [f ](a)
pt,k(x− a)

k!

with the polynomials pt,k(x) forming a basis for R[x] (in the case that t = 1, this is called the
“rising factorial” basis). Hence the evaluations of fA in Lemma 4.8 are in 1-1 correspondence with
the values {∇k1/d[fA](0)}. Furthermore, it is easy to see that

lim
d→∞

∇k1/d[f ](x) =
∂kf

(∂x)k
(x) and lim

d→∞
p1/d,k(x) = xk

and so the bases converge in the limit.

Lemma 4.10. Let A and B−1 be d×d positive definite matrices. Then the following are equivalent:

1. S̃dµA (−k/m) S̃dµB (−k/m) = S̃dµAB
(−k/m) for all 0 ≤ k ≤ m

2. det [xI −A] �d det [xI −B] = det [xI −AB]

Proof. Similar to before, let TA, TB, TAB be the U transforms of λ (A) , λ (B) , λ (AB) respectively
and treating TA and TB as independent random variables. Plugging in the definition of the finite
S-transform and integrating, Equation 1. is equivalent to having∥∥e−xs∆+

(
I − e−xA

)∥∥
d

∥∥e−xs∆+
(
I − e−xB

)∥∥
d

= c
∥∥e−xs∆+

(
I − e−xAB

)∥∥
d

∥∥e−xs∆+
(
I − e−xI

)∥∥
d

for some constant c. By Lemma 4.8 this can be rewritten as

(ρAρB)−dsfA(s)fB(s) = c(ρAB)−dsfAB(s)fI(s) (16)

where the polynomials fX have the property that fX(−k/m) = ρ−kX E
{
T kX
}

(where TI = 1). Hence
plugging in −k/m into Equation (16) gives

E
{
T kA

}
E
{
T kB

}
= cE{TAB}k

where the value of c can be deduced from the k = 0 case (so c = 1). Since TA and TB are
independent, the previous holds if and only if TATB and TAB have the same first d moments. This
is equivalent to the statement

E
{

(x− TATB)d
}

= E
{

(x− TAB)d
}
.

which is equivalent to 2. by Lemma 3.4.

20



4.2.2 Relation to Voiculescu

We now show that the our definition is, again, a generalization of the modified S-transform (see
Section 1.1 for the difference between this and Voiculescu’s version).

Lemma 4.11. Let A be a positive definite operator with compactly supported spectral distribution
µA. Then

lim
d→∞

Ñ d
µA

(s) = M̃(−1)
µA

(s)

at all points s ∈ (ln ρA,∞).

Proof. This time we consider the function

f(x) = − ln ∆+
(
I − e−xA

)
.

f(x) exists and is continuous on the interval (ln ρA,∞) and we have

f ′′(x) = tr
[
Ae−x(I −Ae−x)−1

]
+ tr

[
A2e−2x(I −Ae−x)−2

]
which is strictly positive for x > ln ρA and so f is strictly convex. By Corollary 2.4, we therefore
have

f∗′(s) = f ′
−1

(s) =
(
−M̃µA (ex)

)−1
(s) = lnM̃(−1)

µA
(−s)

where

f ′(x) = −tr
[
Ae−x(I −Ae−x)−1

]
= tr

[
I − ex(exI −A)−1

]
= 1− exGµA (ex) = −M̃µA (ex) .

Plugging this into Corollary 2.6 gives

lnM̃(−1)
µA

(s) = f∗′(−s) = − ∂

∂s
ln
∥∥e−xs∆+

(
I − e−xA

)∥∥
∞

and so the lemma then follows from Lemma 2.5.

Note that when A is a matrix with eigenvalues r1, . . . , rd, the function ∆+ (I − e−xA) has zeroes
exactly when x = ln ri. Hence this seems to be encoding the fact that the addition of logs is the
log of multiplication without actually operating on the log of the operator itself.

5 Finite freeness

One of the appealing attributes of free probability is the fact that one can “instantiate” freeness.
That is, given two distributions µA and µB, one can find operators A and B with those spectral
distributions such that µA � µB = µA+B [34]. Of course finding such instances is hard (hence
the need for convolutions). That said, the mere knowledge that an additive convolution could be
achieved by simple addition is quite useful, as there is much known about the relationship between
the eigenvalues of a sum and the eigenvalues of the summands. For example, one can deduce a
trivial bound on the spectral radius of the sum given the addends ρA+B ≤ ρA + ρB, an inequality
that is not directly obvious from the definition of the additive convolution.

In this section we will attempt to define a concept of finite freeness. Note that this is the
completely opposite ordering of how one would typically develop free probability. Rather than
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defining freeness and then investigating how operations act with respect to that definition, we
defined a collection of operations and will try to characterize the property that leads to them. This
is because “the property” is no longer a universal trait and will depend on the operation in question.
This is both a blessing and a curse: on the one hand it means that we will not have the convenience
of just calling things “free” and then doing arbitrary things to them. On the other hand, it will
allow us to apply our theory to operators that satisfy much a weaker constraint than “freeness”. In
particular, we will be able to “instantiate” finite freeness using (computable) matrices, something
that was not possible in free probability. A consequence of this will be a collection of majorization
relations that we prove in Section 5.2.

We should note that we will intentionally blur the lines between polynomials and (classes of)
real symmetric matrices in this section. Both will be associated to a multiset, either via its roots (in
the case of a polynomial) or its eigenvalues (in the case of matrices). In this regard, the convolutions
defined in Section 2.1 can be extended to multisets by operating on the monic polynomials with
the elements of that multiset as roots. Equivalently, it can be extended to a (rotation invariant)
operation on (classes of) real symmetric matrices by operating on the characteristic polynomials of
those matrices. Because all of the convolutions preserve real rootedness [19], it is plausible that they
could coincide with classical matrix operations, and this will fuel our definition of finite freeness.

Definition 5.1. We will say two d× d real symmetric matrices A and B are in finite free position
(or simply d-free) if

det [xI − yA− zB] = det [xI − yA] �d det [xI − zB]

for all y, z ∈ R.

Remark 5.2. Because of the heightened role that additive convolution plays in probability theory
(for example, in many of the limit theorems in Section 6), we will take a noticably “additive centric”
view. This is done to avoid having to resort to conventions like “finitely multiplicatively free,” but
whether such terms are inevitable is another question. So, at least in regards to this paper, the
term “free” will be used in association with an additive property.

Also worth noting is that, at least with respect to the additive convolution, our definition is
stronger than it needs to be (requiring the equality to work on all real numbers y and z rather than
just y = z = 1). It turns out that the increased structure will make more sense when applied to
the multiplicative convolution, but it would be interesting to explore the effects of weakening these
conditions.

To show that finite freeness exists, we will use some results in the theory of hyperbolic polyno-
mials. Given a vector ~e, a homogeneous polynomial p is said to be hyperbolic with respect to ~e if
p(~e) 6= 0 and the univariate polynomial p̂(t) = p(~x − t~e) has only real roots for all points x. The
canonical example of a hyperbolic polynomial is the determinant acting on the space of real symmet-
ric matrices: the determinant is hyperbolic with respect to the identity matrix since det [tI −X]
is real rooted for all symmetric matrices X (the roots then being simply the eigenvalues). An
extremely useful characterization of hyperbolic polynomials [16, 15]:

Theorem 5.3. A polynomial p on R3 is hyperbolic of degree d with respect to the vector ~e = (1, 0, 0)
and satisfies p(~e) = 1 if and only if there exist d× d real symmetric matrices B,C such that

p(x, y, z) = det [xI + yB + zC] .
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A corollary to Theorem 5.3 is a rather strong statement concerning the existence of matrices in
finite free position.

Lemma 5.4. For any real symmetric matrices A,B there exists a rotation matrix R such that A
and RTBR are in finite free position.

Proof. Consider the polynomial

p(x, y, z) = det [xI − yA] �d det [xI − zB]

We first show that p is hyperbolic with respect to the vector ~e = (1, 0, 0).
Clearly p(1, 0, 0) 6= 0 and so it remains to show that p̂(x0 − t, y0, z0) is real rooted for all fixed

values x0, y0, z0. Plugging in, we get

p̂(x0 − t, y0, z0) = det [(x0 − t)I − y0A] �d det [(x0 − t)I − z0B]

= (−1)d det
[
tI + Â

]
�d (−1)d det

[
tI + B̂

]
(17)

where
Â = y0A− x0I and B̂ = z0B − x0I

are both Hermitian. However, the fact that 17 is always real rooted when A and B are Hermitian
was shown in [19] (as noted in Section 2.1).

Hence p meets the requirements for Theorem 5.3, which means it can be written in the form

p(x, y, z) = det [xI + yU + zV ]

for some matrices U and V . Since p(x, 1, 0) = det [xI −A], it must be that λ (U) = λ (−A), and
similarly, λ (V ) = λ (−B). In particular there exists rotations P and Q such that

P TUP = −A and QTV Q = −B

Let R = QTP . Then we have

p(x, y, z) = det [xI + yU + zV ]

= det
[
xI + yU −QBQT

]
det
[
P TP

]
= det

[
xI − yA− P TQBQTP

]
= det

[
xI − yA−RTBR

]
which is exactly the statement that A and RTBR are in finite free position.

Equation (4) then provides a collection of identities that characterize matrices in finite free
position. The decomposition of determinants into mixed discriminants shown by Equation (9)
allow us to state these identities explicitly:

Lemma 5.5. For two d× d real symmetric matrices A and B, the following are equivalent:

1. A and B are in finite free position

2. d! D (A[j], B[i], I[d− j − i]) = D (A[j], I[d− j]) D (B[i], I[d− i]) for all i, j.
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Proof. Simply expand the relation

det [xI − yA− zB] = det [xI − yA] �d det [xI − zB]

using Equation (4) and equate coefficients.

In general, the rotation guaranteed by Lemma 5.4 may not be unique. Since determinants are
invariant under rotations, we have

p(x, y, z) = det [xI − yA− zB] = det
[
RT (xI − yA− zB)R

]
= det

[
xI − yRTAR− zRTBR

]
and so any rotation R that leaves A unchanged provides a new rotation of B that is in finite
free position with A. The extreme case of this is when A = I (the identity), which is in finite
free position with every matrix. Since I is freely independent (in the Voiculescu sense) from all
operators, this should be of little surprise. However, this fact has useful consequences:

Corollary 5.6. If A and B are in finite free position, then sA+ tI and uB + vI are in finite free
position for any s, t, u, v ∈ R.

Proof. Follows directly from the definition.

Despite the lack of uniqueness, it would be useful to characterize any property of finite free
position that can be guaranteed (either by all or by some rotation). The next lemma is a step in
that direction:

Lemma 5.7. Let A and B be d× d real symmetric matrices with A diagonal. Then there exists a
rotation matrix R such that A and RTBR are in finite free position and the diagonal of RTBR is
constant.

Proof. By Corollary 5.6, the statement is true for all pairs (A,B) if and only if is true for all pairs
(A,B − tr [B] I), so without loss of generality, we can assume tr [B] = 0. Let Q be the rotation
guaranteed by Lemma 5.4. For any matrix X, we have the relation D (X, I[d− 1]) = d!tr [X], so
Lemma 5.5 implies

d! D
(
A[j], QTBQ, I[d− j − 1]

)
= D (A[j], I[d− j]) D

(
QTBQ, I[d− 1]

)
= 0

for all j. In particular, taking various linear combinations of these gives

D
(
(xI −A)[d− 1], QTBQ

)
= 0

for all values of x. Letting p(x) = det [xI −A], this gives

p(x)
∑
i

bi
x− ai

= 0

where bi is the ith diagonal entry of RTBR (and same for ai). Since the set of values for which
p(x) = 0 is finite, continuity implies that ∑

i

bi
x− ai

= 0
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for all x.
Note that for each distinct value of u ∈ {ai}, we can choose x sufficiently close to u such that

the terms with 1/(x− u) dominate the other terms. Thus for the sum to be 0, it must be that the
set of bi for which ai = u sum to zero (in the case that there is a unique ai, then the corresponding
bi must equal 0).

Recall from the previous discussion that, given A and B in finite free position, we have that A
and STBS are in finite free position for any rotation S such that STAS = A. This is exactly the
set of rotations that act independently on the eigenspaces of A, which (because A Is diagonal) are
the set of rotations that act on the submatrices of A for which the diagonal entries are the same.
Thus we can pick a rotation S that averages the elements of the diagonal of B corresponding to a
single eigenspace of A. Thus the rotation R = QS places A and RTBR in finite free position and
causes RTBR to have a 0 diagonal.

We now observing the analogous statement to Lemma 5.5 for the multiplicative convolution:

Lemma 5.8. For two d× d real symmetric matrices A and B, the following are equivalent:

1. det [xI −AB] = det [xI −A] �d det [xI −B]

2. d! D (AB[i], I[d− i]) = D (A[i], I[d− i]) D (B[i], I[d− i]) for all i.

Proof. Simply expand the relation

det [xI −AB] = det [xI −A] �d det [xI −B]

using Equation (5) and equate coefficients.

Hence we have the following relationship between finite freeness and the multiplicative convo-
lution:

Corollary 5.9. If B is invertible and A and B−1 are in finite free position, then

det [xI −AB] = det [xI −A] �d det [xI −B]

Proof. For A and B−1 in finite free position, we have by Lemma 5.5

d! D
(
A[i], B−1[d− i]

)
= D (A[i], I[d− i]) D

(
B−1[d− i], I[i]

)
for all i. Multiplying both sides by det [B] gives

d! D (AB[i], I[d− i]) = D (A[i], I[d− i]) D (B[i], I[d− i])

which is precisely what is needed by Lemma 5.8.

5.1 Comparison to Voiculescu’s freeness

To compare finite freeness with Voiculescu’s version, it is instructive to see what is implied by the
latter which is not implied by the former. For example, if operators A and B are freely independent
(in the Voiculescu sense), then

1. µA � µB = µA+B
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2. µA � µB = µAB

3. f(A) and g(B) are freely independent for any functions f, g.

The first statement is true for finite freeness (by construction), but the second and third are
not true in general. This should not come as a huge surprise, as the requirements for a matrix
to instantiate additive convolution (Lemma 5.5) and multiplicative convolution (Lemma 5.8) are
different. Furthermore, different instantiations of finite freeness can give different results when
multiplied, as the next example shows:

Example 5.10. Consider

A =

 1 0 0
0 2 0
0 0 3

 and B =

 2 0 1
0 2 0
1 0 2

 ,

both of which have characteristic polynomial pA(x) = pB(x) = x3 − 6x2 + 11x− 6. On one hand,
we have

[pA �3 pB](x) = x3 − 12x2 + 46x− 56 and [pA �3 pB](x) = x3 − 12x2 +
121

3
x− 36

while on the other hand, we have

det [xI −A−B] = x3 − 12x2 + 46x− 56 and det [xI −AB] = x3 − 12x2 + 41x− 36

Hence A and B are in free position, but do not instantiate the multiplicative convolution. We could
also have taken

B+ =

 2
√

2/2 0√
2/2 2

√
2/2

0
√

2/2 2

 or B− =

 2
√

2/2 0√
2/2 2 −

√
2/2

0 −
√

2/2 2


which give

det
[
xI −A−B+

]
= det

[
xI −A−B−

]
= x3 − 6x2 + 11x− 6

and
det
[
xI −AB+

]
= det

[
xI −AB−

]
= x3 − 12x2 + 40x− 36

On the other hand, there are special cases where the additive and multiplicative convolutions
do coincide. One such situation occurs when one of the matrices is a projection. The proofs are
heavy in computation and are not particularly enlightening, so we have separated them out into
Section 5.3. The result of these computations, however, leads to the following corollary:

Corollary 5.11. If A and B are d× d real symmetric matrices in finite free position with A2 = A
then

det [xI −AB] = det [xI −A] �d det [xI −B]

Proof. The fact that A and B are in finite free position and A2 = A are exactly the hypotheses in
Lemma 5.18. Hence we have

d! D (A[i], B[j], AB[k], I[d− i− j − k]) = D (A[i+ k], I[d− i− k]) D (B[j + k], I[d− j − k]) .

for all i, j, k with i+ j + k ≤ d. The case i = j = 0, in particular, gives

d! D (AB[k], I[d− k]) = D (A[k], I[d− k]) D (B[k], I[d− k])

for all k, which by Lemma 5.8 suffices to prove the lemma.

26



5.2 Application: Majorization

The fact that one can find matrices in finite free position is far more useful than simply for the ability
to “instantiate” the operation with fixed matrices. In particular, we will use the characterization
in Lemma 5.7 to show that the roots of certain convolutions satisfy a majorization relation. Such a
relation can be useful due to the large number of inequalities that it implies (see [23]). A collection
x1 ≥ · · · ≥ xn of real numbers is said to majorize the collection y1 ≥ · · · ≥ yn if the inequality

k∑
i=1

xi ≥
k∑
i=1

yi

for all k ≤ n and (furthermore) holds with equality when k = n. Perhaps the most well-known
majorization relation (first noticed by Schur) occurs between the eigenvalues of a Hermitian matrix
and the diagonal entries of that matrix. Hence Lemma 5.7 implies a similar relation between the
roots of a polynomial and an additive convolution:

Corollary 5.12. Let p, q be a real rooted, degree d matrices for which the sum of the roots of q is
0. Then the roots of [p�d q] majorize the roots of p,

The remainder of this section will be dedicated to showing a generalization of Corollary 5.12.
Given an m×n matrix A, the kth compound matrix of A is the

(
m
k

)
×
(
n
k

)
matrix Ck(M) consisting

of the k × k minors of A. That is, for J ⊆
([m]
k

)
and K ⊆

([n]
k

)
, we have

Ck(A)J,K = det
[
A[J,K]

]
where A[J,K] denotes the submatrix of A consisting of rows in J and columns in K. One can then
define the kth additive compound matrix of A as

∆k(A) =
∂

∂t
Ck(I + tA)

∣∣∣∣
t=0

.

The following properties of additive compound matrices are well known (see [13], for example):

Lemma 5.13.

1. If A and B are m× n matrices, then

∆k(A) + ∆k(B) = ∆k(A+B).

2. If A is a d× d diagonal matrix, then ∆k(A) is a diagonal matrix.

3. If A is a d× d Hermitian matrix, then ∆k(A) is a Hermitian matrix.

4. ∆k(A)J,J = Tr
[
A[J,J ]

]
for all J ∈

([d]
k

)
5. If A is a d× d matrix with eigenvalues λ1, . . . , λm. Then the eigenvalues of ∆k(A) are{∑

i∈S
λi : S ∈

(
[d]

k

)}
.
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The utility of the additive compound matrices (at least as it applies to majorization) can be
seen in the last property listed in Lemma 5.13: it allows one to turn statements regarding the sum
of the k largest eigenvalues of a matrix A into a statement regarding the (single) largest eigenvalue
of ∆k(A). The statement regarding the (single) largest eigenvalue that will be of interest to us is
proved in the next lemma:

Lemma 5.14. Let A be a d× d real, diagonal matrix and let B be a d× d real symmetric matrix
with 0 diagonal. Then the function

f(t) = λmax(A+ tB).

is increasing for t ≥ 0.

Proof. For each value of t, let vt be a maximal eigenvector, so that

f(t) = vTt (A+ tB)vt = max
‖v‖=1

vT (A+ tB)v.

Then for s 6= t, we have

f(s) ≥ vTt (A+ sB)vt = max
‖v‖=1

vT (A+ tB)v. = f(t) + (s− t)vTt BvTt

and so for s > t we have

vTt Bvt ≤
f(s)− f(t)

s− t
≤ vTs Bvs.

where it is easy to check that vT0 Bv0 = 0 (since v0 is an elementary basis vector). Hence for s > t,
we have

0 ≤ vTt Bvt ≤
f(s)− f(t)

s− t
and so f(t) is increasing.

We are now in position to show the generalized result:

Theorem 5.15. Let p, q be degree d polynomials with the sum of the roots of q being 0. For t ≥ 0,
define the polynomials

rt(x) = [p(x) �d t
dq(x/t)].

Then the roots of rt(x) majorize the roots of rs(x) if and only if t ≥ s.

Proof. By Lemma 5.7, there exist real symmetric matrices A,B with A a diagonal matrix and B
with 0 diagonal for which

p(x) = det [xI −A] and q(x) = det [xI −B] and rt(x) = det [xI −A− tB] .

Note that by Lemma 5.13, we have that

� ∆k(A) is a diagonal matrix for all k

� ∆k(B) has 0 diagonal for all k
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and so by Lemma 5.14, we have that for t ≥ s

λmax(∆k(A+ tB)) ≥ λmax(∆k(A+ sB)).

In other words, the sum of the largest k roots of rt(x) is at least as large as the sum of the largest
k roots of rs(x). It is easy to check that this holds with equality when k = n, and so the roots of
rt(x) majorize the roots of rs(x) (by definition).

Note that r0(x) = p(x) so Theorem 5.15 contains Corollary 5.12 as a special case. It is easy to
see, however, that one cannot derive Theorem 5.15 from Corollary 5.12 as the next example shows:

Example 5.16. Consider the polynomial q(x) = x4 − 12x2 so that for any real rooted p, we have

[p(x) �4 q(x)] = p(x)− p′′(x) and [p(x) �4 24q(x/2)] = p(x)− 4p′′(x)

and so Theorem 5.15 implies that the roots of p(x)− p′′(x) majorize the roots of p(x)− 4p′′(x). In
order to derive a similar result directly from Corollary 5.12, we would need a polynomial r(x) for
which

[r(x) �4 q(x)] = 2dq(x/2)

and one can check that the only such polynomial is

r(x) = x4 − 36x2 − 72

which is not real rooted (so Corollary 5.12 would not apply).

5.3 Computations

The goal of this section is to prove Lemma 5.18 below. We first prove a combinatorial identity that
is an easy consequence of the extension to the binomial theorem:

(x+ 1)−k =
∑
i

(
−k
i

)
xi =

∑
i

(−1)i
(
k + i− 1

i

)
.

Lemma 5.17. Let j, k, n be nonnegative integers such that j + k ≤ n. Then

k∑
t=0

(−1)t
(
k

t

)(
n− t

n− j − k − t

)
=

(
n− k

n− j − k

)
Proof. We expand

(x+ 1)k =
∑
i

xi
(
k

i

)
and

(x+ 1)−j−k−1 =
∑
i

(−1)ixi
(
j + k + i

i

)
.

Hence the coefficient of xn−j−k in the product is∑
t

(
k

t

)
(−1)n−j−k−t

(
n− t

n− j − k − t

)
.
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On the other hand, we can multiply first and then expand to get

(x+ 1)−j−1 =
∑
i

(−1)ixi
(
j + i− 1

i

)
so that the coefficient of xn−j−k is

(−1)n−j−k
(

n− k
n− j − k

)
.

The lemma then follows by equating the two representations for the same coefficient.

We now have the tools to prove the lemma. For d× d matrices, we define the quantity

f(i, j, k) = D (A[i], B[j], AB[k], I[d− i− j − k])

Lemma 5.18. Let A and B be d× d matrices that satisfy the identities

d! f(i, j, 0) = f(i, 0, 0)f(0, j, 0) (18)

for all i, j and such that A2 = A. Then

d! f(i, j, k) = f(i+ k, 0)f(0, j + k, 0) (19)

Proof. Let Tr [A] = a. Without loss of generality, we can assume A is diagonal (with a 1s and (d−a)
0s on the diagonal). Hence we can use the formula in Equation (10) to calculate D (A[i], I[d− i])
by counting the number of permutations for which the first i elements are at most a. That is,

f(i, 0, 0) = (a)(a− 1) . . . (a− i+ 1)(d− i) . . . (1) =
a!(d− i)!
(a− i)!

. (20)

Hence Equation (19) is equivalent to

f(i, j, k) = f(0, j + k, 0)
a!(d− i− k)!

d!(a− i− k)!
. (21)

Using Lemma 2.9, we have the relation

af(i, j, k) = if(i, j, k) + jf(i, j − 1, k + 1) + kf(i, j, k) + (d− i− j − k)f(i+ 1, j, k),

which, after rearranging and shifting indices (j → j + 1, k → k − 1) gives

(j + 1)f(i, j, k) = −(a− i− k + 1)f(i, j + 1, k − 1) + (d− i− j − k)f(i+ 1, j + 1, k − 1). (22)

If we define the quantity g(i, j, k) as

f(i, j, k) = (−1)i
j!(d− i− j − k)!

(a− i− k)!
g(i, j, k)

then substituting gives

g(i, j, k) = g(i, j + 1, k − 1) + g(i+ 1, j + 1, k − 1). (23)
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We claim that Equation (23) implies

g(i, j, k) =
k∑
t=0

(
k

t

)
g(i+ t, j + k, 0). (24)

This is trivially true for the case k = 0, so we can assume it to be true for k = K − 1 with K > 1
and consider the case k = K. Using the relation, we have

g(i, j, k) = g(i, j + 1, k − 1) + g(i+ 1, j + 1, k − 1)

which by the inductive hypothesis means

g(i, j,K) =

k−1∑
t=0

(
k − 1

t

)
g(i+ t, j + k, 0) +

k−1∑
t=0

(
k − 1

t

)
g(i+ t+ 1, j + k, 0)

=
k−1∑
t=0

(
k − 1

t

)
g(i+ t, j + k, 0) +

k∑
t=1

(
k − 1

t− 1

)
g(i+ t, j + k, 0)

=

k∑
t=0

g(i+ t, j + k, 0)

where the last equality uses the identity
(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
. Combining Equations (22) and (24)

give

f(i, j, k) =
k∑
t=0

(
k

t

)
(−1)t

j!(d− i− j − k)!(a− i− t)!
(j + k)!(d− i− j − k − t)!(a− i− k)!

f(i+ t, j + k, 0).

Now Equations (18) and (20) imply

f(i+ t, j + k, 0) =
1

d!
f(i+ t, 0, 0)f(0, j + k, 0) =

a!(d− i− t)!
d!(a− i− t)!

f(0, j + k, 0)

so that

f(i, j, k) = a!f(0, j + k, 0)

k∑
t=0

(
k

t

)
(−1)t

j!(d− i− j − k)!(d− i− t)!
d!(j + k)!(d− i− j − k − t)!(a− i− k)!

= f(0, j + k, 0)
a!j!(d− i− j − k)!

d!(a− i− k)!

k∑
t=0

(−1)t
(
k

t

)(
d− i− t

d− i− j − k − t

)
.

Using Lemma 5.17 reduces this to

f(i, j, k) = f(0, j + k, 0)
a!j!(d− i− j − k)!

d!(a− i− k)!

(d− i− k)!

(d− i− k − j)!j!
= f(0, j + k, 0)

a!(d− i− k)!

d!(a− i− k)!

which equals (21) as required.
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6 Applications

In this final section, we explore some of the consequences of the definition of the d-finite R-transform.
There are number of “free” versions of classical distributions, for example the role of “free Gaus-
sian” is played by the semicircle law and the role of “free Poisson” distribution is played by the
Marchenko–Pastur law [17]. The goal then is to try to derive the finite free version of such distribu-
tions and then to show they behave (with respect to the free additive convolution) in the way they
should. In particular, we will focus on additive limit theorems associated with these distributions,
such as the central limit theorem and Poisson limit theorem. To do so, we will need to compute
additive convolutions, and so we begin by proving some computational properties.

6.1 Properties of the symmetric additive convolution

Recall from the Section 2.1, that we have the following formula for the additive convolution of two
degree d polynomials:

[p�d q](x) =
∑
i+j≤d

xd−i−j(−1)i+j
(d− i)!(d− j)!
(d− i− j)!d!

piqj . (25)

While Equation (25) was (in that case) only defined for polynomials of degree d, such a formula can
be applied to any polynomials. In particular, we will consider the case when p and q have degree
at most d.

Three useful observations can be made directly from the formula. The first is linearity: for any
polynomials p, q, r and any constant α, we have

[p�d (αq + r)] = α[p�d q] + [p�d r]

The second is the observation that when deg(f) = d, we have [f �d x
d](y) = f(y). Third is the

observation that [p�d q] = [q �d p].
We now write the formula in Equation (4) in a slightly different form:

[p�d q](x) =
1

d!

d∑
i=0

p(i)(x)q(d−i)(0) (26)

where p(i) denotes the ith derivative of p. In this form, the following lemma is almost immediate:

Lemma 6.1. Let R =
∑

i ai
∂i

(∂x)i
be a linear differential operator. Then

[R{p}�d q](x) = [p�d R{q}](x) = R{[p�d q](x)}

Proof. By linearity, it suffices to prove this for the operator R = ∂k

(∂x)k
.

[
p(k) �d q

]
(x) =

1

d!

d∑
i=0

p(i+k)(x)q(d−i)(0) =
∂k

(∂x)k
1

d!

d∑
i=0

p(i)(x)q(d−i)(0) =
∂k

(∂x)k
[p�d q] (x).

By the same argument,

∂k

(∂x)k
[p�d q] (x) = [q(k) �d p](x) = [p�d q

(k)](x)

where the last equality is due to the commutativity that was observed earlier.
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Lemma 6.1 gives an effective way to compute the symmetric additive convolution. As an
example, we give the following corollary proving that, in the space of degree d polynomials, the
symmetric additive convolution is invertible:

Corollary 6.2. For any degree d polynomial p, there exists a degree d polynomial q such that
[p�d q] = xd.

Proof. Since p has degree d, we can write p(x) = R{xd} where R is a linear differential operator with
a nonzero identity term. Viewing this as a power series, we can compute the formal (multiplicative)
inverse R−1 and then compute q = R−1{xd}. As a result, we have

[p�d q](x) = [R{xd}, R−1{xd}](x) = R{R−1{[xd �d x
d]}} = xd

Last but not least, it is not hard to show that �d is associative (and therefore forms an algebra
on polynomials degree d).

Lemma 6.3. Let p, q, r be polynomials. Then

[p�d [q �d r]] = [[p�d q] �d r]

Proof. A quick calculation shows that both are equal to

1

(d!)2

d∑
i=0

d−i∑
j=0

f (i)(x)g(j)(0)h(2d−i−j)(0)

The algebra formed by �d is isomorphic to the algebra of truncated polynomials C[x]/〈xd+1〉
under multiplication. This can easily be seen by considering the homomorphism φ taking a polyno-
mial p to the differential operator R such that R{xd} = p. As noted in [19], the symmetric additive
convolution of two real rooted polynomials is another real rooted polynomial. This forms a cone in
the algebra of truncated polynomials that could be interesting in its own right.

6.2 Distributions and Limit Theorems

The approach we will take to finding the finite free versions of various distributions is to reverse
engineer them from their R-transforms. That is, for a given R-transform, we would like to find
the degree d polynomial whose d-finite R-transform matches the given R-transform (on the first d
coefficients). The introduces a slight technicality; the reverse procedure is not unique, since any
constant multiple of a polynomial has the same roots that the original polynomial did. Hence we
will introduce the notation p ≈ q to denote that p and q have the same roots (or p = cq for some
c 6= 0, if you prefer). The next lemma comes directly from the definitions in Section 4.1.1:

Lemma 6.4. Let Q(x) be a polynomial. Then

Q

(
Dx

d

){
xd
}
≈ det [xI −A] ⇐⇒ 1

d

Q′(x)

Q(x)
≡ −RdµA (x) mod [xd+1]
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Proof. By Corollary 4.4, we have

RdµA (s) ≡ − 1

m
Ds ln E

{
e−dsTA

}
mod [sd]

and so
1

d

Q′(x)

Q(x)
≡ −RdµA (x) mod [xd+1]

if and only if

Q(x) ≈ E
{
e−dsTA

}
mod [xd+1]

where TA is the U transform of λ (A). We note that for any scalar t and any polynomial p(x), we
have by Taylor’s theorem

p(x+ t) =
∑
i

ti

i!

∂i

(∂x)i
{p(x)} = etDx{p(x)}.

Hence

Q

(
Dx

d

){
xd
}
≈ E

{
e−TADx

}{
xd
}

= E
{

(x− TA)d
}

which is det [xI −A] by definition of TA.

It is worth noting that, for our purposes, we do not need to worry about the restriction to
d coefficients, as this comes automatically from taking derivatives of xd. We also note that the
constant of integration (that will come when we integrate) is precisely the cause of the ambiguity
that necessitated the use of ≈ (and so can safely be ignored).

The rest of this section will be the derivation of polynomials corresponding to known distribu-
tions and then proofs of their associated limit laws. The proofs will use the polynomials directly
(and the techniques of Section 6.1) and not the R-transforms — something that is not possible in
traditional free probability. Of course (in these cases) we know the R-transform, so it is somewhat
backwards to find the polynomials and use them when we could simply use the R-transforms. The
goal, however, is to prove that such a proof is possible, as there are (many) instances where one can
not compute the R-transform from a given distribution, and so we anticipate that the techniques
displayed below will serve useful in such scenarios.

6.2.1 Constant

The constant random variable is characterized by having first cumulant nonzero and all other
cumulants zero, so that

RdµA (s) = µ

for µ a constant. Using Lemma 6.4, we can compute

lnQ(x) = −µd
∫

dx = −xµd+ c

for some constant c. Hence

Q

(
Dx

d

){
xd

d!

}
≈ e−µDx

{
xd
}

= (x− µ)d.
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This is precisely what we would hope, as

(x− µ)d = det [xI − µI]

which is exactly the random matrix version of adding a constant random variable.
The limit theorem associated with the constant distribution is the law of large numbers. The

classical version of this theorem states that if Xi are independent random variables with E{Xi} = µ,
then

1

n

n∑
i=0

Xi
n→∞−−−→ µ

almost surely. Here we give an d-finite version of this result:

Theorem 6.5 (Law of large numbers). Let p1, p2, . . . be a sequence of degree d real rooted polyno-
mials with

pi =
∏
j

(x− ri,j) and
1

d

∑
j

ri,j = µ

for all i. Assume further that
1

d

∑
j

r2i,j < C

for some constant C. Then
lim
n→∞

[q1 �d . . .�d qn] = (x− µ)d

where qi(x) = n−dpi(nx).

Proof. For fixed i, we can write pi(x) = xd+a1x
d−1 + . . . . Since a1 is the sum of the roots, we have

(by the hypotheses) a1 = dµ. So if Pi is the linear differential operator such that Pi{xd} = pi(x),
we have

Pi = 1 +
a1
d
Dx + · · · = 1 + µDx + . . .

Now let Qi be the differential operator such that Qi{xd} = qi(x) Then one can check that

Qi = 1 +
a1
dn
Dx +O

(
n−2

)
= 1− µ

n
Dx +O

(
n−2

)
and so

[q1 �d . . .�d qn] =

(
n∏
i=1

Qi

){
xd
}

=
(

1− µ

n
Dx +O

(
n−2

))n {
xd
}

which converges to

e−µDx

{
xd
}

= (x− µ)d

as n→∞.
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6.2.2 Gaussian

The Gaussian random variable is characterized by having first two cumulants nonzero and all other
cumulants zero. Given that we know how the constant random variable behaves, it suffices to
consider the case when only the second cumulant is nonzero, so that

RdµA (s) = sθ

for θ a constant. The computation is similar to the constant random variable, as we get

lnQ(x) = −θd
∫
x dx = −dθ

2
x2 + c

so that

Q

(
Dx

d

){
xd
}
≈ e−θx2/(2d)

{
xd
}
≈ Hd

(√
d

θ
x

)
where Hd(x) is a Hermite polynomial. This leads to the following definition: For real numbers µ
and σ, let

Nd[µ, σ
2](x) :=

(
d− 1

σ2

)−d/2
Hd

(
(x− µ)

√
d− 1

σ2

)
(27)

Firstly, we remark that the constant in front is merely to make the polynomial monic (it is
irrelevant, since all that matters are the roots). Secondly, we remark that it should come as
no surprise that the corresponding polynomial should be the Hermite polynomial, since the root
distribution must converge asymptotically to the semicircle law (the free probability version of the
Gaussian), and it is well known that the roots of the Hermite polynomials do exactly that [24].

Lastly, we want to comment on the factor of d − 1 (rather than d from the derivation above).
Recall that the coefficients of the d-finite R-transform converge to the true R-transform. Apart
from the first coefficient, however, they do not match exactly. In particular, an operator X with
mean and variance τ and σ2 will have R-transform

RµX (s) = τ + σ2s+ . . .

and d-finite R-transform

RµX (s) = τ +

(
1− 1

d

)
σ2s+ . . .

Hence by working backwards from κ2 = 1, we were mistakenly giving the distribution a variance of
d
d+1 .

Remark 6.6. Note that there are two distinct scalings of Hermite polynomials in the literature.
The first (which is used in [33]), defines Hermite polynomials as the polynomials which are orthog-
onal to the weight function ex

2
. The second (which we will use), defines Hermite polynomials as

the polynomials which are orthogonal to the Gaussian weight function ex
2/2. This seemed to be the

more appropriate choice, given the role that the Hermite polynomials are playing in this context
(as the “Gaussian” of finite free probability).
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The limit theorem associated with the Gaussian is the central limit theorem. The classical
version of this theorem says that for Xi i.i.d. random variables E{Xi} = 0 and Var[Xi] = σ2 <∞,
we have

1√
n

n∑
i=1

Xi
n→∞−−−→ N(0, σ2).

in distribution (where N(µ, σ2) is the Gaussian distribution). Here we give a proof in the d-finite
case:

Theorem 6.7 (Central limit theorem). Let p1, p2, . . . be a sequence of degree d real rooted polyno-
mials with pi =

∏
j(x− ri,j) such that∑

j

ri,j = 0 and
1

d

∑
j

r2i,j = σ2

for all i. Then
lim
n→∞

[q1 �d . . .�d qn] = Nd[0, σ
2]

where qi(x) = n−d/2pi(
√
nx).

Proof. For fixed i, we can write pi(x) = xd + a1x
d−1 + a2x

d−2 + . . . . Since a1 is the sum of the
roots and a2 is the sum of the pairwise products of roots, we have (by the hypotheses)

a1 = 0 and a21 − 2a2 = dσ2

so that a2 = −dσ2/2. So if Pi is the linear differential operator such that Pi{xd} = pi(x), we have

Pi = 1 +
a1
d
Dx +

a2
d(d− 1)

D2
x + · · · = 1− σ2

2(d− 1)
D2
x + . . .

Now let Qi be the differential operator such that Qi{xd} = qi(x) The one can check that

Qi = 1 +
a1
d
√
n
Dx +

a2
nd(d− 1)

D2
x +O

(
n−3/2

)
= 1− σ2

2n(d− 1)
D2
x +O

(
n−3/2

)
and so

[q1 �d . . .�d qn] =

(
n∏
i=1

Qi

){
xd
}

=

(
1− σ2

2n(d− 1)
D2
x +O

(
n−3/2

))n {
xd
}

(28)

which one can check converges to

e−σ
2D2

x/2(d−1)
{
xd
}

= Nd[0, σ
2]

as n→∞.

Typically one needs to assume bounds on the higher moments in order to guarantee that the
higher order terms in Equation (28) converge to 0 asymptotically. For polynomials of a fixed
degree, however, this is implied by the bound on the second moment and the finite support of the
underlying distribution.
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6.2.3 Poisson

The Poisson random variable with parameter λ is characterized by having all cumulants equal to
λ, so that

RdµA (s) =
λ

1− s
This time, we have

lnQ(x) = −λd
∫

1

1− x
dx = λd ln(1− x) + c

so that

Q

(
Dx

d

){
xd
}
≈
(

1− Dx

d

)λd {
xd
}
≈ L((λ−1)d)

d (dx)

where L
(α)
d (x) is an associated Laguerre polynomial.

L(α)
n (x) =

∑
i

(−x)i

i!

(
n+ α

n− i

)
. (29)

This leads to the following definition (we will assume λd is an integer for simplicity):

Pd[λ] := d!(−d)−dL
((λ−1)d)
d (dx) (30)

where again the constant is only there so the resulting polynomial is monic.
Note that when λ < 1, we should expect to have an atom of probability (1 − λ) at 0. While

this is not obvious in the current definition, the following Laguerre polynomial identity

(−x)i

i!
L(i−n)
n (x) =

(−x)n

n!
L
(n−i)
i (x). (31)

can be applied to get

Pd[λ](x) = (λd)!(−d)−λdxd(1−λ)L
(d(1−λ))
λd (xd) (32)

which (more obviously) has the atom at 0.
Again, it should come as no surprise that the resulting polynomial is a Laguerre polynomial,

since the root distribution must converge asymptotically to the free Poisson law (or Marchenko–
Pastur) law, and it is known that the Laguerre polynomials do exactly that. One does need to
check that the correct scaling of the law occurs, which one can do simply by checking that the
support of the law matches that of the free Poisson law (the free Poisson law with expectation λ
has support [(1−

√
λ)2, (1 +

√
λ)2]). This can be done easily using the following result of Dette and

Studden [10].

Theorem 6.8. For any a > 0, the root distribution of the polynomials

L(an)
n (bnx)

has asymptotic density function
b

2πx

√
(r2 − x)(x− r1)

on the interval [r1, r2] where

r1 =
1

b
(2 + a− 2

√
1 + a) and r2 =

1

b
(2 + a+ 2

√
1 + a).
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For λ > 1, we can apply Theorem 6.8 to Equation (30) (so a = λ− 1 and b = 1) to get a root
distribution supported on the interval

[(1−
√
λ)2, (1 +

√
λ)2].

When λ < 1, we can instead apply Theorem 6.8 to what is left of Equation (32) after removing
the atom at x = 0 with measure 1 − λ. This time, we take a = 1/λ and b = 1/λ to get a root
distribution (again) supported on the interval

[(1−
√
λ)2, (1 +

√
λ)2].

The limit theorem associated with Poisson distribution is known as the Poisson limit theorem.
This classical version of this theorem states that if Xi are independent Bernoulli random variables
with P(Xi = 1) = p, then ∑

i

Xi
n→∞−−−−→
np→λ

Pois(λ)

in distribution. Here we give a proof in the d-finite case:

Theorem 6.9 (Poisson limit theorem). For all λ, d such that λd is an integer, we have

[p�d . . .�d p︸ ︷︷ ︸
λd times

] = Pd[λ](x)

where p(x) = xd−1(x− 1).

Proof. We start by noting another identity of Laguerre polynomials:

n!xαL(α)
n (x) = (Dx − 1)nxn+α

which when combined with Equation (31) (and a change of variables) gives

(Dx − r)nxn+α = (n+ α)!(−r)−αL(−α)
n+α (rx) (33)

for all constants r.
Now we write

p(x) = xd − xd−1 =

(
1− 1

d
Dx

)
{xd}

so that

[p�d . . .�d p︸ ︷︷ ︸
λd times

] =

(
1− 1

ks
Dx

)λd
{xd} = (−d)−λd (Dx − d)λd {xd}.

So using Equation (33) with r = d and n = λd and α = (1− λ)d gives

[p�d . . .�d p︸ ︷︷ ︸
λd times

] = d!(−d)−dL
((λ−1)d)
d (dx)

as claimed.
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6.2.4 Compound Poisson

The compound Poisson random variable with parameter λ and second distribution µ is characterized
by having ith cumulant κi = Mi(µ) where Mi is the ith moment of µ. We assume that µ is
distributed uniformly over the roots of a degree d polynomial h. Hence

RdµA (s) = λ

∫
t

1− st
µ(t) dt

Hence

lnQ(x) = −λd
∫∫

t

1− xt
µ(t) dx dt = c+ λd

∫
ln (1− xt)µ(t) dt.

Now if h(x) =
∏
i(x− ri), then we have∫

ln (1− xt)µ(t) dt =
∑
i

ln(1− xri) = ln
∏
i

(1− xri).

Hence we have

Q

(
Dx

d

){
xd
}
≈
∏
i

(
1− ri

d
Dx

)λd {
xd
}
≈ L((λ−1)d)

d (dr1x) �d . . .�d L
((λ−1)d)
d (drdx)

where L
(α)
d (x) is the associated Laguerre polynomial from Equation (29).

6.3 Restricted Invertibility

To conclude the applications, we relate the well known concept of restricted invertibility first proved
by Bourgain and Tzafriri in [5] to the theory developed here. An argument of this type was first
introduced in [18], but many aspects of the proof become much more intuitive in the language of
finite free probability. Theorem 3.1 of [18] is the following:

Theorem 6.10. If v1, . . . , vn ∈ Rd are vectors with

n∑
i=1

viv
T
i = I,

then for all k < n, there exists a set S ⊂ [n] with |S| = k such that

λk

(∑
i∈S

viv
T
i

)
≥

(
1−

√
k

d

)2(
d

n

)
Those familiar with random matrix theory might recognize the quantity(

1−
√
k

d

)2(
d

n

)
as being the lower bound on the spectrum of the Marchenko–Pastur distribution with parameters
λ = k/d and intensity α = d/n. This should not be much of a surprise, as the typical way one
would form such a distribution would be to consider the spectrum of

k∑
i=1

uiu
T
i
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where the ui are random vectors where each coordinate of ui is an independent Gaussian random
variable with variance d/n. The resulting matrix is known as a Wishart matrix, and the distribution
of the eigenvalues of such matrices was calculated in [17]. Using the results of Voiculescu, the
addition of these random vectors approaches free convolution (in the asymptotic limit), and so one
can instead see this as the sum of k freely independent rank-1 matrices with trace d/n. That is,
the suspected bound in the finite case seems to be governed by the calculation in free probability.

The finite free version of rank-1 matrices with trace d/n is simply

p(x) = xd −
(
d

n

)
xd−1

and a calculation similar to the one done in Theorem 6.9 gives

[p�d . . .�d p︸ ︷︷ ︸
k times

] = d!(−n)−dLk−dd (nx)

where we pick λ = k/d. The remainder of the proof then lies in building an “interlacing family” as
developed in [20] that allows one to translate bounds on the roots of this Laguerre polynomial to
bounds on the roots of individual polynomial. One can easily check that such an interlacing family
can be built by picking k vectors uniformly at random with replacement. That is, if ui is a random
vector that is uniformly distributed over v1, . . . , vn, then

E

{
det

[
xI −

k∑
i=0

uiu
T
i

]}
= d!(−n)−dL

(k−d)
d (nx)

and the hierarchy of polynomials that one gets by picking each vector one at a time forms such an
interlacing family. We refer the reader to [18] for details.

7 Conclusions and Acknowledgements

The purpose of this paper was to draw the connection between the recent work of the author with
Daniel Spielman and Nikhil Srivastava [18, 19, 20, 21, 22] with free probability and more traditional
random matrix theory. It shows how the asymptotic intuitions that have been established in each
of these fields can be translated into finite results, both computationally and theoretically. It gives
a unified framework for solving problems using the “method of interlacing polynomials” that the
author hopes will inspire new and creative uses.

7.1 Further Research

There are a number of possible interesting directions. Ongoing work between the author with
Dimitri Shlyakhtenko and Nikhil Srivastava extends the concepts of free entropy and free Fisher
information to the finite setting. Finite free probability also seems to have an interesting combi-
natorial interpretation that draws from both the classical (all partitions) and the free (noncrossing
partitions) interpretations. Extending the results here to asymmetric matrices and to other con-
cepts in free probability, like freeness with amalgamation [32], could also lead to interesting new
applications. Of particular interest would be an extension to bivariate polynomials, which is possi-
bly related to the concept of second order freeness introduced by Mingo and Speicher [25]. Such an
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extension would have the potential to place more advanced results such as [1, 21] under a similar
umbrella, which would be a notable advance in the understanding of how such results fit into the
free probability framework.

It would be interesting to see direct applications to random matrix theory, particularly in the
realm of universality. Since such results typically use the relationship between polynomials and
random matrices (and free probability) in a somewhat ad-hoc way, one might hope that a theory
connecting the two would be useful. The concept of finite free entropy seems to be directly related
to such pursuits, since its manifestation employs a logarithmic potential, a topic that has led to a
number of results in the asymptotic root distributions of polynomials [31]. In the reverse, random
matrix theory could be useful in establishing concentration of measure results in this paradigm —
something typically necessary for widespread applications.

Lastly, we mention possible implications in quantum information theory. In fact, results of this
sort have already been applied in such a context: when A and B are in finite free position and B
has rank 1, the (single) nontrivial eigenvector of B coincides with the so-called trace vector that
was introduced by Murray and von Neumann in their initial work in C∗ algebras [26]. Trace vectors
have been used to obtain results in private quantum channels [7], and so the fact that finite freeness
is a vast generalization of this concept gives promise to the possibility of further applications.
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This work is an accumulation of ideas that has formed through an incredible partnership with Daniel
Spielman and Nikhil Srivastava. The author wishes to recognize two conferences: the “Beyond
Kadison–Singer: paving and consequences” workshop at AIM, and the “Hot Topics: Kadison–
Singer, Interlacing Polynomials, and Beyond” workshop held at MSRI. Both were influential in
giving the author the foothold in the numerous fields that this work used as inspiration, and
such interactions would not have happened without such support. The author was also helped
enormously by participating in the free probability workshop hosted by Dan Voiculescu and Dmitri
Shlyakhtenko. In addition to thanking the many people people who have given insights into this
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